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Abstract. By extending our plasma theory of superlattices on the basis of several tight-
binding metallic sheets, we have derived dispersion refations for the collective excitations of
atight-binding superlattice consisting of alternating layers of one chain sheet and ¥ identical
layers. An expression for the Coulomb interaction is worked out for quasi-ope dimensional
systems in terms of a screened factor. The plasma frequency is obtained as a function of the
wavevector analytically as well as numerically for several specific cases.

1. Introduction

Since the discovery of high 7, superconductivity [1], it has been known that oxide
superconductors can be described as superlattices with a basis of several metallic sheets.
Recently, Triscone and his collaborators [2] have reported the successful preparation of
real superlattices of high- T, superconductors consisting of alternating layers of 1:2:3
materials. On the other hand, it has been argued [3] that investigating collective modes
in high- T, perovskites might be a clue to understanding the mechanisms that govern the
superconductivity of these materials. These stimulated us to present a plasma theory
[4] of tight-binding superiattices of La-, Bi-, and Tl-based high-temperature oxide
superconductors. To our knowledge, previous studies [5-10} were concerned with the
elementary collective excitations (plasmons) of the two-dimensional (2p) and layered
free-electron-gas models with or without chain sheets, both experimental and theor-
etical, However, in view of the poor conductivity of the ceramics in their normal states,
free-charged-particle theories are inappropriate and we prefer rather a tight-binding
description. Difficulties are encountered in the study of plasma oscillations in tight-
binding systems, because the Coulomb vertex in the momentum space ceases apparently
to be a function of the momentum transfer between two interacting particles alone, so
that reasonable approximation schemes such as the random-phase approximation (RPA)
are no longer feasible. Nevertheless, for tight-binding systems with inclusion of nearest-
neighbour hopping only, we have devised a specific renormalization procedure [4, 11],
which restores a simple dependence on the momentum transfer alone of a renormalized
vertex, so that standard techniques such as the rRPA can be readily employed as in the
case of the free electron gas.
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The 1:2:3 materials such as YBa,Cu;(, can be treated as tight-binding superlattices
with chain sheets [8-10]. This idealized model provides an adequate description of the
energy band structure near the Fermi surface [12]. As a generality of [4], this paper is
concerned with the plasmon dispersion relations of tight-binding superlattices consisting
of one chain sheet and N identical layers in a single supercell, which is relevant with
1:2:3 materials for N = 2. In a future publication, we hope to understand the role of
these plasmon modes in superconductivity,

2. Theory

We write the wavefunction of a carrier localized around a site x; in a one-dimensional
chain of constant 2 as

(”(x XY T Yar 2T zn) = ¢(”(x - )&na(y YarZ Hzn) (1)

where (1, ) labels the ath chain within the nth supercell with coordinate y, = ab along
the b axis and z, = nc along the ¢ axis and &,, is an envelope wavefunction describing
the confinementin the b and ¢ directions. Similarly the wavefunction of a carrier localized
around asite r, = (x,, y;} in a two-dimensional square lattice of constant a{= b) is written
as

O (r =112 = 2,) = 9P — rYbu(z ~ 2u) )
where (n, [} labels the /th plane within the nth supercell with coordinate z,, = nec +
2ol =1,2,...,N),alongthe c axis and ,, is an envelope wavefunction describing

the confinement in the ¢ direction. For simplicity, we assume | £,,|? to be delta functions
and | £,,|? to be Gaussian function without loss of generality. Changing &, and §,, to
more complicated localized functions does not change the conclusion of this paper in
any qualitative fashion. Therefore we can neglect the overlap of @4y and ¢{? in the ¢
direction and that of @!l in the b direction, respectively. A guasi-one-dimensional
(quasi-1p) Bloch function ¢l (p,;x, v, z) can accordingly be constructed in terms of
@ha as

w(pix, y,2) =L AN (p ) 2 W (x — x1, Y ~ ¥4, 2 — 2,) exp(ip,x,) (3}

Xy

and a quasi-two-dimensional Bloch function y$2(p; r, z) in terms of @3 as

Yo (pir2) =S AP X 9P (r~ 1,z — z,) explip - 1) (4)

L]

with A%(p,) and A®(p) the respective normalization constants, L the length of con-
ductive chains and $ the area of conductive layers. In the approximation including only
overlap between wavefunctions of nearest-neighbour sites, the conduction bands for
chains and layers are given, respectively, by the standard method [13].

eM(p,) = [AV(p)]*[ef’ — 27D cos (p,a)] ()
e (p) = [AD(p)] el — 20D [cos(p,a) + cos(p,a)]} (6)

with eff! the relevant on-site single-particle energy and /% the relevant hopping integral
between nearest-neighbour sites. The essential point of the theory is the observation
that in the same approximation the matrix element of the Coulomb potential between



Collective modes in tight-binding superlatfices 3731
wavefunctions y,(p + ¢}, );(p’' — ¢) and wf,’;,,] '), 1.0}::3 (p) can be factorized to
write [4, 11]

Vasimsjonsi g (0,0, @) = ANP)AP(p + AV (p)AD(p' — g)
x TT(P)]‘?uu'.nzj(q)T(p')an;!.n:,i’5::2;'.::3}' (7)

where ni denotes na for i = 1 and ni for i = 2, respectively, and T'is a row matrix (the
superscript T means transpose):

TT(p) = [1, cos(p,a), sin(p,a), cos(p,a), sin(p,a)] (8)
and Visa 3 X 5 matrix which can be factorized further into
Voiwr (@) = BUDV i (8T (—q) %

where 5 is a column matrix with elements defined by overlap integrals between nearest-
neighbouring ¢ orbitals while

((2e2/)[Ko(q V(Yo — Yo ) + (20 — 20)7)

VIV RGN |
Vi (@) = § (2e? [eq) exp(—qlz, — zor| +1g,¥4) for j= 2: ;=
(27e [eq) exp(—qlzy — 2ol — ig,yu) =i =
[ (2me? feq) exp(—glz,y — Z,rl)
(10)

where Ky is the zeroth-order Bessel function of imaginary argument, € is the background
dielectric constant and § a screened factor in the direction perpendicular to the chains.
Hence by absorbing the matrix T to define a new particle propagator G,(p, w),
which is a row matrix GL(p, @) = AD(P)G . (p, w)TT(p), we are left with a reduced
vertex V,; »» which is a function of the momentum transfer alone. The cost paid is that
both the propagator and the vertex become matrix quantities. We are thus able to use
the standard Feynman-Dyson technique of many-particle theory to study the effective
interaction between a pair of carriers as in the case of a free electron gas. In the Rpa, the

effective interaction matrix is given by [4]
U iy (g, ) = vm‘,n'!‘ (g) + Ev vni.n"i"(‘f)ﬂ"(q » ﬂ-’)ff e (@ ©) (11)

where IT, is the RPA response function matrix:

fi, = j dik et gAD (k) AN + g

(2:rr)“
f(eV(k + q)) = f(e9 (k)

. [T (k). 12
x Dk + q) — eV (k) + ho + 107 ) (12)
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Fourier transforming equation (11) with respect to #, n’ and &, &’ to make use of the
periodicity of the layers in the ¢ direction and that of the chains in the b direction, i.e.

. . c , At
Uni.n'a" =p<‘:’(4') f WdQZ exp[lfh(zn - zn’)} P{ JT(_Q)

S dg,Us(qsx: 95+ 9., @) explig,(ve — o] i=i=1

Uﬂf'(q’q:! (!)) exp(inya) for i= 1,1" =2

Un(g, .. w) exp(—ig,ys) i=2,i=1

Un’l’(q"Iuw) [=i=2

(13)

we obtain from (11) and (9) that

Up =Vp + ’2 VIl Upy (14)
and

Vir =V + V(T1; = T1)Ve /T = (11, —T1,)V) (15)
for!.I'=0,1,2,..., N, Inequation (15),

202

Voo = ie‘f > [Kolg,VaTal + nic?)

- Ko(VgZ + BV aa + n’c?) expliq,aa + ig ne) (16)
and

2te? d

Vip=Vh= = {sinh[q(c - 2 c,)]

€q =1

[r
+ sinh(q 2 c,-) exp(—iqzc)}/[cosh(qc) — ¢0s(g,¢)] (17)
f=i41

for! + ' # 0and!’ = [, where we define 2/_,. ;c; = Ofor! = /'. These normalized results
agree precisely with those given for the free-electron-gas models [6], except that the
response functions are replaced by

(g, w) = pUT(—q)IL(g, @) (g)/c; (18)

withe¢,=afori=1and ¢, = 1 for i = 2. Now we should make some comments on V.
If we consider the b — 5, ¢—  limit, the different chains are uncoupled, and then Vi
describes an isolated chain. In this limit, the potential Vi in (16) becomes
Voo(b— =, c—> ) = (e’afe) In[(47 + B7)/B). (19)
Its asympotic behaviour is
—(2e%a/e) In -0
Vb m e ry = | CESODGD) a
~(e*f2afeq?) gy—>®

which is consistent with the asymptotic behaviour given by Friesen and Bergersen [14]
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for one-dimensional (1D) systems. We next consider the ¢— o limit. The different
sheets are uncoupled, and then Vi, describes a quasi-one-dimensional plane superlattice
consisting of 1D chains. When g, — @, Vi — ¢72. Such an asymptotic behaviour is
different from that in the previous discussion [15] on quasi-1D plane superlattices, where
Voo — q;? exp(—agq,) for g, — «in the limiting case ¢ — . Therefore, strictly speak-
ing, the Coulomb interaction of the quasi-1D systems is better expressed by (16) than by
previous expressions.

The condition for the existence of collective modesis given by the pole of the screened
interaction. Thus plasmon modes can be obtained by solving the (N + 1) X (N + 1)
determinant equation

det|dy — VIl =0 (20

and then the effective interaction between carriers in specific sheets or chains can be
obtained using the Fourier transformation in equation (14).

3. Results and discussion

We now proceed to seek solutions of equation (20) for ¥ =0, 1,2 (where N is the
number of the identical layers per unit cell).

3.1. Superlattices with N = 0

For superlattices with only a single chain sheet per unit cell, equation (20) becomes

1 =1V =0. (21)
The RPA response function IT, is easily evaluated at zero temperature [8], usually with
the high-frequency approximation (@ > w%’ = 4/%sin(g .a/2|)

) = @0/ m){1 - [(ef - “')/21(1312}1/:: gijw’ = A, g/, (22)

Thus, in the long-wavelength limit (g, g, — 0), we have

,  |@netA fec)qi/(az + 47 + q2)] for | 77 °

= (23)

(2¢*A,a/€)F(B)a? g.c>m
where F(8) has the In 8 limit in the 8 — = limit and is vanishingly small in the 8— 0
limit. The g,¢ — O spectrum is acoustic for g2 + qﬁ # Qand the g,c = m acoustic plasmon
for g, — Ois an antisymmetric mode corresponding to the charge fluctuation of opposite
sigh in alternate chain sheets. Since our analysis is valid only in the high-frequency
regime, we must demand that the velocity of the acoustic branch w(q.c = @) exceeds
ol ie. §> B. Using (23), we get

B. = (zafcy) exp{(en ]V af2e V1= (e]) - w)/2T ]} 24)

with ¥ the Euler constant. We emphasize that the above analysis is qualitatively valid
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Figure 1. Plasmon modes as a function of the Figure 2. Plasmon modes as a function of the
wavevector for the N = 0 case with 4,2 = 0, and wavevector for the N = 1 case with ¢,a = 0, and
bothgq.c =0andg.c = x:{a) Ba = 5:(b) fa = 15. both g,¢c = Oand g.c = x: (a) Sa = 5: {b) fa = 15.

1n {a), the broken line denotes the w{g,c =)
mode disappearing into the single-excitation
regime.

for the high-frequency regime. Figure 1 shows a graph of the plasmon band for fa = 5
and 15. In our calculation, for the ¢! we choose Gaussian fits to Slater wavefunctions
and adopt the parameters consistent with the band calculation [12] and measured results
[10] for Y-Ba—~Cu~O superconductorsasa =b = 3.8 A, € =4.5, /0 = JA =0 45¢V,
el —u=0.6eVande® — pu = 0.7eV, whichare the same for N = 0, 1, 2. In addition,
the superlattice unit cellischosenasc = (N + 1)a. Asexpected, the band width decreases
as f§ increases.

3.2. Superlattices with N = 1

Inthe N = 1 case, there is a 2D layer as well as a chain sheet per unit cell. Equation (20)
becomes

(1 - HLVGO)(l - szu) - IV Ve =0. (25)
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The 20 RPA response function IT, has the following limiting forms in the high- and low-
frequency regimes:

(g, w) = (BIP /e E(f) — (1 - FFg* 0*) = A4’ or?Z o)
—@/a)F)1 + iw/wP) = ~B(1 + iw/w@) o <o
(26)
where F and E are the complete elliptic integrals of the first kind and the second kind,
respectively, and @ is the maximum single-particle excitation energy in the 2D layers:
0@ = 4JP[|sin(q,a/2)| + |sin(g,a/2)|]

and

f=V1=1(e) - W/

Inthe high-frequency regime (w > @'?), using (26) and (22) in (25), we get the following
results, In the intermediate-coupling limit, i.e. gc <€ 1, for g,c— 0,

wf = (4’ [ec[(A, + A2)a? + Ayq;1/(a5 + g + a2k (27)

This mode is an optical plasmon mode for g.c = 0, which corresponds to the in-phase
motion of carriers in the layers and chain sheets. For g,c— 7,

wl = (ne’A,c/€)q?

o} = (2e’A,a/€)F(B)q;.

Clearly, the w; and w, modes are simply the respective 2D and 10 plasmon frequencies
of the system. This conclusion is general since we have Vi, = V;— 0for g,c— = and
¢ = 2¢,. In this case, the chain sheets and 2D ayers are uncoupled. If w, < 0 for a
specific 8, this mode will be damped (to be discussed below). In the weak-coupling limit,
i.e.ga® 1, onehas

wi= (23'32!41/5)‘1

wi = —(2e* A c/€)q% In(g,/B).

Here we obtain the very satisfying intuitive result that in the weak-coupling limit the e,
and ¢, modes are simply the respective 2D and 1D modes.

Now we consider the low-frequency regime (w{l’ < @ < w{?). From (25) we find
that there could be just one solution satisfying @) < w < . This solution is necess-
arily complex (indicating the mode to be damped), since I1, has an imaginary part due
to single-particle excitations. In the intermediate-coupling limit {gc < 1), the long-
wavelength behaviour of the collective modes is given by (where 7, is the imaginary part
of the frequency)

28)

(29)

w3 =(A,/B)qx

Yoo = (A1/4IDaB) (g} /VaE + q3)

w3 = (2¢°A a/€)F(B)q}

Vs = (ne*c/4TPae)q} cos?(q,¢/2)/V gl + 4]

forg,c—0

forg,c—nx

(30)
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Figure 3. Plasmon modes as a function of the wavevector for the N = 2 case with g,a =0, and both ¢,c = 0
and g,c = m: (a) Ba = 5: (b) Ba = 15. These results should describe the superlattices of the 1:2:3 materials.

The ¢,c — 0 mode is one of the mixed modes (another is the mode given by (27)), and
the g,c—> o mode is simply the 1> mode but it is damped except at g,¢ = &. In the weak-
coupling limit, we obtain the same result for w, as (29) and the imaginary part y,,, =
0. Thus, even though these acoustic branches lie below w{, they are still approximately
undamped modes in the weak-coupling limit. In figure 2 we show the plasmon band
structure for the N = 1 case with g, = 0 (thus w}) = @@ for JI'' = J@), Clearly, the
plasmon bands are sensitive to the screened factor 8. For small 8, there is only one
undamped band. As g increases, the number of modes increases. For a specific 8, there
are two plasmon bands. The w, band depends on g, while the w, band for a specific 8
loses all dependence on g,.

3.3. Superiattices with N = 2

We finally turn to the case of a trilayer per unit cell composed of two identical planes
and a chain sheet. The free-particle system for the N = 2 case was previously studied by
Mahan and Wu [8] and Griffin [9]. For the tight-binding case, the plasmon modes are
given from (20) by

(1- Hz‘?u)(l - Hszz) - H§V12V:1 =0. (31)

The numerical solution of equation {31} is shown in figure 3. As expected, there are
three plasmon bands. The bands &, and @, are analogous to modes w, and w, in figure
2. However, in contrast with figure 2(a), in figure 3(2} the band w, disappears into
the single-excitation regime at fa = 5. The band w; is the new feature of the N=2
superlattice. This case isrelevant to 1:2: 3 materials, which we leave for future discussion
[16]. There the effective interaction between a pair of particles in the same plane has
been analysed. It can be shown that a net attraction resuits for superlattices with chain
sheets(N = 2)inthe same way as for superlattices without chain sheets [4]. The attraction
arises predominantly through exchange of momentum and energy via virtually excited
plasmons in neighbouring planes, which is crucial for Cooper pairing.
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