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Abstract. By extending our plasma theory of superlattices on the basis of several tight- 
binding metallic sheets, we have derived dispersion relations forthe collective excitationsof 
a tight-binding superlattice consistingof alternatinglayersofone chain sheet and Nidentical 
layers. An expression for the Coulomb interaction is worked out for quasi-one dimensional 
systems in terms of a screened factor. The plasma Frequency is obtained as a function of the 
wavevector analytically as well as numerically for several specific cases. 

1. Introduction 

Since the discovery of high T, superconductivity [l], it has been known that oxide 
superconductors can be described as superlattices with a basis of several metallic sheets. 
Recently, Triscone and his collaborators [2] have reported the successful preparation of 
real superlattices of high-Tc superconductors consisting of alternating layers of 1 :2:3 
materials. On the other hand, it has been argued [3] that investigating collective modes 
in high-T, perovskites might be a clue to understanding the mechanisms that govern the 
superconductivity of these materials. These stimulated us to present a plasma theory 
[4] of tight-binding superlattices of La-, Bi-, and TI-based high-temperature oxide 
superconductors. To our knowledge, previous studies [5-10] were concerned with the 
elementary collective excitations (plasmons) of the two-dimensional (ZD) and layered 
free-electron-gas models with or without chain sheets, both experimental and theor- 
etical. However, in view of the poor conductivity of the ceramics in their normal states, 
free-charged-particle theories are inappropriate and we prefer rather a tight-binding 
description. Difficulties are encountered in the study of plasma oscillations in tight- 
bindingsystems, because the Coulomb vertexin the momentum space ceases apparently 
to be a function of the momentum transfer between two interacting particles alone, so 
that reasonable approximation schemes such as the random-phase approximation (RPA) 
are no longer feasible. Nevertheless, for tight-binding systems with inclusion of nearest- 
neighbour hopping only, we have devised a specific renormalization procedure [4,11], 
which restores a simple dependence on the momentum transfer alone of a renormalized 
vertex, so that standard techniques such as the RPA can be readily employed as in the 
case of the free electron gas. 
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The 1 : 2:3materialssuch asYBa2Cu,0,can be treatedas tight-bindingsuperlattices 
with chain sheets [%lo], This idealized model provides an adequate description of the 
energy band structure near the Fermi surface [12]. As a generality of [4], this paper is 
concerned with the plasmon dispersion relations of tight-binding superlattices consisting 
of one chain sheet and N identical layers in a single supercell, which is relevant with 
1 : 2 :  3 materials for N = 2. In a future publication, we hope to understand the role of 
these plasmon modes in superconductivity. 

2. Theory 

We write the wavefunction of a carrier localized around a site xi in a one-dimensional 
chain of constant Q as 

d'& - x i . y  -y..z - 2.) = V ) ( x  -xL)E"dY - y e 7 2  -2.) (1) 
w,here (n ,  a) labels the Lvth chain within the nth supercell with coordinatey, = rub along 
the b axis and I ,  = nc along the c axis and En,, is an envelope wavefunction describing 
theconfinement in the bandcdirections. Similarly the wavefunctionof acarrier localized 
around asiter, = ( x , , y i )  in a two-dimensional square latticeofconstant a(= 6) iswritten 
as 

p)$)(r - r , ,  z - z f l ~ )  = +Jz)(r - r,)Eni(z - L.,) ( 2 )  
where (n.  I) labels the Ith plane within the nth supercell with coordinate zni = nc + 

ci (I = 1,2, . . . , A'), along the c axis and Cni is an envelope wave function describing 
the confinement in the c direction. For simplicity, we assume I [c# to be delta functions 
and I Enw,1* to be Gaussian function without loss of generality. Changing En* and 5,) to 
more complicated localized functions does not change the conclusion of this paper in 
any qualitative fashion. Therefore we can neglect the overlap of &! and q# in the c 
direction and that of q1i2 in the b direction, respectively. A quasi-one-dimensional 
(quasi-io) Bloch function * i ? ( p * ; x , y ,  2) can accordingly be constructed in terms of 
v?hh' as 

v i % ~ ~ ; x , ~ , z )  = L - " ~ A ( I ) ( P ~ ) E ~ ! , ~ ( X  - x i , y  -~, ,z-z.)exp(ip,x~) (3) 
I, 

and a quasi-two-dimensional Bloch function V!,,)(p; r ,  L )  in terms of ~ $ 3 )  as 

with A['l@,) and A(21(p)  the respective normalization constants, L the length of con- 
ductive chains and S the area of conductive layers. In the approximation including only 
overlap between wavefunctions of nearest-neighbour sites, the conduction bands for 
chains and layers are given, respectively, by the standard method [13]. 

&( l1 (pX)  = [A(' l (p , ) ]z[&' - 2J(') cos (pxa)]  (5 )  

(6) 
with E$ the relevant on-site single-particle energy and J"1 the relevant hopping integral 
between nearest-neighbour sites. The essential point of the theory is the observation 
that in the same approximation the matrix element of the Coulomb potential between 

&'"(p) = [A(') (p)Iz{ef1 - 2~('1[COs(p,Q) + cos(p,n)]} 
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wavefunctions Qiii(p + q ) ,  ~ i L ( p '  - q )  and ~ $ ( p ' ) ,  Q!;:,(p) can be factorized to 
write [4,11] 

V=,i.n2i.n,i.nri.(P,P1, 4)  = A("(P)A"'(P + q)A(')(P')A(')(p' - 4) 

x ~ T ( p ) v ~ , i . ~ ~ ( q ) f ( p f ) ~ ~ , ~ , " ~ ~ ~ 2 i , ~ ~ ~  (7) 

where ni denotes n a  for i = 1 and nl for i = 2, respectively, and f i s  a row matrix (the 
superscript T means transpose): 

fTW = 11, cos(p,a), sin(p,a), cos(pya), sin(p,a)l 

v.i,.ti. (4) = p ( q ) v , , . . ; ,  (q )$ i ' )T( -q )  

(8) 

(9) 

and V is a 5 x 5 matrix which can be factorized further into 

where$') isacolumn matrix with elementsdefined by overlap integralsbetween nearest- 
neighbouring @) orbitals while 

Vni ,n~c(d  = 

i = i ' = 1  

i = 1, i' 2 

i = 2 ,  i' = 1 

j = i ' = 2  

*(2e'/~)[&(q,V\~. - Y,,)' + (2, - z.,)') 

for 1 - K I ( 6 P F W Y e  - Y,.)Z + (2. - %)=)I 

(2ne*/~q)  exp(-qlz, - znlPl + iq,y,) 
(2xeZ/~q)exp(-qlz,i - z,,/ - iqyyes) 

. ( 2 x e 2 / ~ q )  exp(-qlznl - z , d )  

f ( d i ) ( k  + q ) )  - f ( d i ) ( k ) )  
d i ) ( k  + q)  - &(k) + hw + io+ 

fT(k). X 



we obtain from (11) and (9) that 

U,,. = v,. 4- Vll<,r12 U,., 
I" 

and 

P,,, = v,~, + v,(n, - n,)v,./[l - (n, -n,)v,i (15) 
for 1. I' = 0,1,2, .  . ., N ,  In equation (15), 

and 

I' 

[cosh(qc) - cos(q,c)] 

for[+ l ' f O a n d l ' 2  l,wherewedefineZ~=,+,ci =Oforl=['.Thesenormalizedresults 
agree precisely with those given for the free-electron-gas models [6], except that the 
response functions are replaced by 

ni(4, 0) = P(i)T(-q)", OJ)P(i("(q)/c, (18) 
with c, = Q for i = 1 and c, = 1 for i = 2. Now we should make some comments on V,. 
If we consider the b-. m, c-+ m limit. the different chains are uncoupled, and then V,  
describes an isolated chain. In this limit, the potential V,  in (16) becomes 

VW(b-, m, c+ m) = (e2a/c) In[(q: + fiz)/p]. (19) 
Its asvmootic behaviour is 

which is consistent with the asymptotic behaviour given by Friesen and Bergersen [14] 
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for one-dimensional (ID) systems. We next consider the c+ m limit. The different 
sheetsare uncoupled, and then Vwdescribes a quasi-one-dimensional plane superlattice 
consisting of ID chains. When qz + m, V, -f qF2. Such an asymptotic behaviour is 
different from that in the previous discussion [ 151 on quaSi-lD plane superlattices, where 
Vw - q;'I2 exp( -q,) for qx + m in the limiting case c + m. Therefore, strictly speak- 
ing, the Coulomb interaction of the quasi-iD systems is better expressed by (16) than by 
previous expressions. 

Theconditionfor theexistenceofcollectivemodesisgiven bythe poleofthescreened 
interaction. Thus plasmon modes can be obtained by solving the ( N  + 1) x ( N  + 1) 
determinant equation 

detla,,. - V,,.rI2\ = 0 (20) 

and then the effective interaction between carriers in specific sheets or chains can be 
obtained using the Fourier transformation in equation (14). 

3. Results and discussion 

We now proceed to seek solutions of equation (20) for .Y = 0 ,1 ,2  (where N is the 
number of the identical layers per unit cell). 

3.1. Superlattices with N = 0 
For superlattices with only a single chain sheet per unit cell, equation (20) becomes 

1 - n,v,, = 0. (21) 

The RPA response function n, is easily evaluated at zero temperature [8], usually with 
the high-frequency approximation (w B w g )  = 4J(')(  sin(q,&/Zl) 

n, = (4J(')/n){l - [ ( e t )  - p)/2J"']'}'/'q~/~~ - A l  q:/w2. (22) 

Thus, in the long-wavelength limit (qx, qy + 0), we have 

where F(@) has the In /3 limit in the /3+ limit and is vanishingly small in the /3+ 0 
limit.Theq,c+ Ospectrumisacousticfor q: + q: # Oandtheq,~ = nacousticplasmon 
for qy + 0 is an antisymmetric mode corresponding to the charge fluctuation of opposite 
sign in alternate chain sheets. Since our analysis is valid only in the high-frequency 
regime, we must demand that the velocity of the acoustic branch w(q,c = n) exceeds 
w g ) ,  i.e. /3 > /3? Using (23). we get 

/3, = (nu/cr) exp{(~z~( ' )a /2e~)V/1 - [ (EL')  - p ) / 2 ~ ( 1 ) ] 2 }  (24) 

with y the Euler constant. We emphasize that the above analysis is qualitatively valid 
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Figure 1. Plasmon modes as a function of the 
wavevector for the N = 0 case with qva = 0, and 
bothq& = Oandq,r = r:(a)@ = 5:  ( b ) @  = 15. 
In (a) ,  the broken line denotes the o(q,c = x )  
mode disappearing into the single-excitation 
regime. 

Q, Q 

Figure 2. Plasmon modes as a function of the 
wavevector for the N = 1 case with 9 4  = 0. and 
bothq,c = Oandq,c = n:(o)@ = 5:  (b),5a = 15. 

for the high-frequency regime. Figure 1 shows a graph of the plasmon band for pa = 5 
and 15. In our calculation, for the @' we choose Gaussian fits to Slater wavefunctions 
andadopt the parametersconsistent with the bandcalculation[12] andmeasured results 
[lo] for Y-Ba-Cu-0 superconductors as a = b = 3.8 A, E = 4.5, I ( ' )  = I (? )  = 0.45 eV, 
cfJ  - p  = 0.6eVandch') - p  =0.7eV,whicharethesameforN=O,l,2.Inaddition, 
thesuperlatticeunit cellischosenasc = (N + 1)a. Asexpected, thebandwidthdecreases 
a s p  increases. 

3.2. Superlattices with N = I 
In the N = 1 case, there is a 2D layer as well as a chain sheet per unit cell, Equation (20) 
becomes 

(1 - rI,V,)(l - rI,V,,) - rI,rI,v,,v,, =o. (25) 
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The Z D   PA response function n2 has the following limiting forms in the high- and low- 
frequency regimes: 

where Fand E are the complete elliptic integrals of the first kind and the second kind, 
respectively, and 06'' is the maximum single-particle excitation energy in the Z D  layers: 

w $ )  = 4J(2)[ I sin(q,u/z)l+ I sin(q,u/2) I ]  
and 

f =  VI - [(er) - p)/4J'?'Iz. 
In the high-frequency regime (w + w g ) ) ,  using (26) and (22) in (Z), we get the following 
results. In the intermediate-coupling limit, i.e. qc Q 1, for q,c+ 0, 

= (4ne2/41[(A, +A&: + A,q;l/(q: + 4; + 4:)). (27) 
This mode is an optical plasmon mode for q c  = 0, which corresponds to the in-phase 
motion of carriers in the layers and chain sheets. For q,c-+ n, 

07 = (.ce2A2c/c)q2 

w: = (2e2Alu/c)F(P)qt. 
Clearly, the w1 and w2 modes are simply the respective 2~ and I D  plasmon frequencies 
of the system. This conclusion is general since we have Vo,  = Vlo+ 0 for qzc- n and 
c = Zc,. In this case, the chain sheets and 2D layers are uncoupled. If w2 < w g )  for a 
specificp, this mode will be damped (to be discussed below). In the weak-coupling limit, 
i.e. qu 9 1, one has 

w: = (2Re2AI/c)q 

w: = - (2e2Alc/c)q:  ln(q,/p). 
Here we obtain the very satisfying intuitive result that in the weak-coupling limit the w1 
and w 2  modes are simply the respective 2D and ID modes. 

Now we consider the low-frequency regime (U$' Q w < a$)). From (25) we find 
that there could be just one solution satisfying w i )  Q w < w g ' .  This solution is necess- 
arily complex (indicating the mode to be damped), since 112 has an imaginary part due 
to single-particle excitations. In  the intermediate-coupling limit (qc Q l), the long- 
wavelength behaviour of the collective modes is given by (where yw is the imaginary part 
of the frequency) 
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Figure 3. Plasmon modes as a function of the waveveclor for the N = 2 case with q*n = 0. and both q,c = 0 
andq,c= n:(a)@a = 5: (b)@a = 15.Theseresulrsshoulddescribe thesuperlatticesofthe 1:2:3materials. 

The q2c+ 0 mode is one of the mixed modes (another is the mode given by (27)), and 
the q,c -+ z mode is simply the ID mode but it is damped except at qzc = JC. In the weak- 
coupling limit, we obtain the same result for w 2  as (29) and the imaginary part yw2 = 
0. Thus, even though these acoustic branches lie below U:), they are still approximatcly 
undamped modes in the weak-coupling limit. In figure 2 we show the plasmon band 
structure for the N = 1 case with q.a = 0 (thus U:) = w g )  for = P)). Clearly, the 
plasmon bands are sensitive to the screened factor p. For small p. there is only one 
undamped band. Asp increases, the number of modes increases. For a specific 0, there 
are two plasmon bands. The w 1  band depends on qz while the w2 band for a specific p 
loses all dependence on qz. 

3.3. Suprrlarrices with N = 2 

We finally turn to the case of a trilayer per unit cell composed of two identical planes 
and a chain sheet. The free-particle system for the N = 2 case was previously studied by 
Mahan and Wu [8] and Griffin [9].  For the tight-binding case, the plasmon modes are 
given from (20) by 

(1 - rI*V,,)(l  - r12V*2) - rI iV,*V2] = 0. (31) 

The numerical solution of equation (31) is shown in figure 3. As expected, there are 
three plasmon bands. The bands w ,  and 0 2  are analogous to modes w I and w2 in figure 
2. However, in contrast with figure 2(a) ,  in figure 3(a) the band w2 disappears into 
the single-excitation regime at p a  = 5. The band w 3  is the ne+ feature of the N = 2 
superlattice.Thiscaseisrelevantto 1 :2:3materials, which weleavefor futurediscussion 
[16]. There the effective interaction between a pair of particles in the same plane has 
been analysed. It can be shown that a net attraction results for superlattices with chain 
sheets(N 2 2 )  in thesame way as forsuperlattices without chainsheets(41. The attraction 
arises predominantly through exchange of momentum and energy via virtually excited 
plasmons in neighbouring planes, which is crucial for Cooper pairing. 
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